1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use {
    itertools::Itertools,
    lru::LruCache,
    solana_sdk::pubkey::Pubkey,
    std::{cmp::Reverse, collections::HashMap},
};

// For each origin, tracks which nodes have sent messages from that origin and
// their respective score in terms of timeliness of delivered messages.
pub(crate) struct ReceivedCache(LruCache</*origin/owner:*/ Pubkey, ReceivedCacheEntry>);

#[derive(Clone, Default)]
struct ReceivedCacheEntry {
    nodes: HashMap<Pubkey, /*score:*/ usize>,
    num_upserts: usize,
}

impl ReceivedCache {
    // Minimum number of upserts before a cache entry can be pruned.
    const MIN_NUM_UPSERTS: usize = 20;

    pub(crate) fn new(capacity: usize) -> Self {
        Self(LruCache::new(capacity))
    }

    pub(crate) fn record(&mut self, origin: Pubkey, node: Pubkey, num_dups: usize) {
        match self.0.get_mut(&origin) {
            Some(entry) => entry.record(node, num_dups),
            None => {
                let mut entry = ReceivedCacheEntry::default();
                entry.record(node, num_dups);
                self.0.put(origin, entry);
            }
        }
    }

    pub(crate) fn prune(
        &mut self,
        pubkey: &Pubkey, // This node.
        origin: Pubkey,  // CRDS value owner.
        stake_threshold: f64,
        min_ingress_nodes: usize,
        stakes: &HashMap<Pubkey, u64>,
    ) -> impl Iterator<Item = Pubkey> {
        match self.0.peek_mut(&origin) {
            None => None,
            Some(entry) if entry.num_upserts < Self::MIN_NUM_UPSERTS => None,
            Some(entry) => Some(
                std::mem::take(entry)
                    .prune(pubkey, &origin, stake_threshold, min_ingress_nodes, stakes)
                    .filter(move |node| node != &origin),
            ),
        }
        .into_iter()
        .flatten()
    }

    #[cfg(test)]
    fn mock_clone(&self) -> Self {
        let mut cache = LruCache::new(self.0.cap());
        for (&origin, entry) in self.0.iter().rev() {
            cache.put(origin, entry.clone());
        }
        Self(cache)
    }
}

impl ReceivedCacheEntry {
    // Limit how big the cache can get if it is spammed
    // with old messages with random pubkeys.
    const CAPACITY: usize = 50;
    // Threshold for the number of duplicates before which a message
    // is counted as timely towards node's score.
    const NUM_DUPS_THRESHOLD: usize = 2;

    fn record(&mut self, node: Pubkey, num_dups: usize) {
        if num_dups == 0 {
            self.num_upserts = self.num_upserts.saturating_add(1);
        }
        // If the message has been timely enough increment node's score.
        if num_dups < Self::NUM_DUPS_THRESHOLD {
            let score = self.nodes.entry(node).or_default();
            *score = score.saturating_add(1);
        } else if self.nodes.len() < Self::CAPACITY {
            // Ensure that node is inserted into the cache for later pruning.
            // This intentionally does not negatively impact node's score, in
            // order to prevent replayed messages with spoofed addresses force
            // pruning a good node.
            let _ = self.nodes.entry(node).or_default();
        }
    }

    fn prune(
        self,
        pubkey: &Pubkey, // This node.
        origin: &Pubkey, // CRDS value owner.
        stake_threshold: f64,
        min_ingress_nodes: usize,
        stakes: &HashMap<Pubkey, u64>,
    ) -> impl Iterator<Item = Pubkey> {
        debug_assert!((0.0..=1.0).contains(&stake_threshold));
        debug_assert!(self.num_upserts >= ReceivedCache::MIN_NUM_UPSERTS);
        // Enforce a minimum aggregate ingress stake; see:
        // https://github.com/solana-labs/solana/issues/3214
        let min_ingress_stake = {
            let stake = stakes.get(pubkey).min(stakes.get(origin));
            (stake.copied().unwrap_or_default() as f64 * stake_threshold) as u64
        };
        self.nodes
            .into_iter()
            .map(|(node, score)| {
                let stake = stakes.get(&node).copied().unwrap_or_default();
                (node, score, stake)
            })
            .sorted_unstable_by_key(|&(_, score, stake)| Reverse((score, stake)))
            .scan(0u64, |acc, (node, _score, stake)| {
                let old = *acc;
                *acc = acc.saturating_add(stake);
                Some((node, old))
            })
            .skip(min_ingress_nodes)
            .skip_while(move |&(_, stake)| stake < min_ingress_stake)
            .map(|(node, _stake)| node)
    }
}

#[cfg(test)]
mod tests {
    use {
        super::*,
        std::{collections::HashSet, iter::repeat_with},
    };

    #[test]
    fn test_received_cache() {
        let mut cache = ReceivedCache::new(/*capacity:*/ 100);
        let pubkey = Pubkey::new_unique();
        let origin = Pubkey::new_unique();
        let records = vec![
            vec![3, 1, 7, 5],
            vec![7, 6, 5, 2],
            vec![2, 0, 0, 2],
            vec![3, 5, 0, 6],
            vec![6, 2, 6, 2],
        ];
        let nodes: Vec<_> = repeat_with(Pubkey::new_unique)
            .take(records.len())
            .collect();
        for (node, records) in nodes.iter().zip(records) {
            for (num_dups, k) in records.into_iter().enumerate() {
                for _ in 0..k {
                    cache.record(origin, *node, num_dups);
                }
            }
        }
        assert_eq!(cache.0.get(&origin).unwrap().num_upserts, 21);
        let scores: HashMap<Pubkey, usize> = [
            (nodes[0], 4),
            (nodes[1], 13),
            (nodes[2], 2),
            (nodes[3], 8),
            (nodes[4], 8),
        ]
        .into_iter()
        .collect();
        assert_eq!(cache.0.get(&origin).unwrap().nodes, scores);
        let stakes = [
            (nodes[0], 6),
            (nodes[1], 1),
            (nodes[2], 5),
            (nodes[3], 3),
            (nodes[4], 7),
            (pubkey, 9),
            (origin, 9),
        ]
        .into_iter()
        .collect();
        let prunes: HashSet<Pubkey> = [nodes[0], nodes[2], nodes[3]].into_iter().collect();
        assert_eq!(
            cache
                .mock_clone()
                .prune(&pubkey, origin, 0.5, 2, &stakes)
                .collect::<HashSet<_>>(),
            prunes
        );
        let prunes: HashSet<Pubkey> = [nodes[0], nodes[2]].into_iter().collect();
        assert_eq!(
            cache
                .prune(&pubkey, origin, 1.0, 0, &stakes)
                .collect::<HashSet<_>>(),
            prunes
        );
    }
}