1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
use {
crate::{
bucket_item::BucketItem,
bucket_map::BucketMapError,
bucket_stats::BucketMapStats,
bucket_storage::{
BucketCapacity, BucketOccupied, BucketStorage, Capacity, IncludeHeader,
DEFAULT_CAPACITY_POW2,
},
index_entry::{
DataBucket, IndexBucket, IndexEntry, IndexEntryPlaceInBucket, MultipleSlots,
OccupiedEnum,
},
MaxSearch, RefCount,
},
rand::{thread_rng, Rng},
solana_measure::measure::Measure,
solana_sdk::pubkey::Pubkey,
std::{
collections::hash_map::DefaultHasher,
hash::{Hash, Hasher},
ops::RangeBounds,
path::PathBuf,
sync::{
atomic::{AtomicU64, AtomicUsize, Ordering},
Arc, Mutex,
},
},
};
pub struct ReallocatedItems<I: BucketOccupied, D: BucketOccupied> {
// Some if the index was reallocated
pub index: Option<BucketStorage<I>>,
// Some for a data bucket reallocation
// u64 is data bucket index
pub data: Option<(u64, BucketStorage<D>)>,
}
impl<I: BucketOccupied, D: BucketOccupied> Default for ReallocatedItems<I, D> {
fn default() -> Self {
Self {
index: None,
data: None,
}
}
}
pub struct Reallocated<I: BucketOccupied, D: BucketOccupied> {
/// > 0 if reallocations are encoded
pub active_reallocations: AtomicUsize,
/// actual reallocated bucket
/// mutex because bucket grow code runs with a read lock
pub items: Mutex<ReallocatedItems<I, D>>,
}
impl<I: BucketOccupied, D: BucketOccupied> Default for Reallocated<I, D> {
fn default() -> Self {
Self {
active_reallocations: AtomicUsize::default(),
items: Mutex::default(),
}
}
}
impl<I: BucketOccupied, D: BucketOccupied> Reallocated<I, D> {
/// specify that a reallocation has occurred
pub fn add_reallocation(&self) {
assert_eq!(
0,
self.active_reallocations.fetch_add(1, Ordering::Relaxed),
"Only 1 reallocation can occur at a time"
);
}
/// Return true IFF a reallocation has occurred.
/// Calling this takes conceptual ownership of the reallocation encoded in the struct.
pub fn get_reallocated(&self) -> bool {
self.active_reallocations
.compare_exchange(1, 0, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
}
/// when updating the index, this keeps track of the previous data entry which will need to be freed
struct DataFileEntryToFree {
bucket_ix: usize,
location: u64,
}
// >= 2 instances of BucketStorage per 'bucket' in the bucket map. 1 for index, >= 1 for data
pub struct Bucket<T: Copy + 'static> {
drives: Arc<Vec<PathBuf>>,
/// index
pub index: BucketStorage<IndexBucket<T>>,
/// random offset for the index
random: u64,
/// storage buckets to store SlotSlice up to a power of 2 in len
pub data: Vec<BucketStorage<DataBucket>>,
stats: Arc<BucketMapStats>,
/// # entries caller expects the map to need to contain.
/// Used as a hint for the next time we need to grow.
anticipated_size: u64,
pub reallocated: Reallocated<IndexBucket<T>, DataBucket>,
/// set to true once any entries have been deleted from the index.
/// Deletes indicate that there can be free slots and that the full search range must be searched for an entry.
at_least_one_entry_deleted: bool,
}
impl<'b, T: Clone + Copy + 'static> Bucket<T> {
pub fn new(
drives: Arc<Vec<PathBuf>>,
max_search: MaxSearch,
stats: Arc<BucketMapStats>,
count: Arc<AtomicU64>,
) -> Self {
let index = BucketStorage::new(
Arc::clone(&drives),
1,
std::mem::size_of::<IndexEntry<T>>() as u64,
max_search,
Arc::clone(&stats.index),
count,
);
stats.index.resize_grow(0, index.capacity_bytes());
Self {
random: thread_rng().gen(),
drives,
index,
data: vec![],
stats,
reallocated: Reallocated::default(),
anticipated_size: 0,
at_least_one_entry_deleted: false,
}
}
pub fn keys(&self) -> Vec<Pubkey> {
let mut rv = vec![];
for i in 0..self.index.capacity() {
if self.index.is_free(i) {
continue;
}
let ix: &IndexEntry<T> = self.index.get(i);
rv.push(ix.key);
}
rv
}
pub fn items_in_range<R>(&self, range: &Option<&R>) -> Vec<BucketItem<T>>
where
R: RangeBounds<Pubkey>,
{
let mut result = Vec::with_capacity(self.index.count.load(Ordering::Relaxed) as usize);
for i in 0..self.index.capacity() {
let ii = i % self.index.capacity();
if self.index.is_free(ii) {
continue;
}
let ix = IndexEntryPlaceInBucket::new(ii);
let key = ix.key(&self.index);
if range.map(|r| r.contains(key)).unwrap_or(true) {
let (v, ref_count) = ix.read_value(&self.index, &self.data);
result.push(BucketItem {
pubkey: *key,
ref_count,
slot_list: v.to_vec(),
});
}
}
result
}
pub fn find_index_entry(&self, key: &Pubkey) -> Option<(IndexEntryPlaceInBucket<T>, u64)> {
Self::bucket_find_index_entry(&self.index, key, self.random)
}
/// find an entry for `key`
/// if entry exists, return the entry along with the index of the existing entry
/// if entry does not exist, return just the index of an empty entry appropriate for this key
/// returns (existing entry, index of the found or empty entry)
fn find_index_entry_mut(
index: &mut BucketStorage<IndexBucket<T>>,
key: &Pubkey,
random: u64,
) -> Result<(Option<IndexEntryPlaceInBucket<T>>, u64), BucketMapError> {
let ix = Self::bucket_index_ix(key, random) % index.capacity();
let mut first_free = None;
let mut m = Measure::start("bucket_find_index_entry_mut");
let capacity = index.capacity();
for i in ix..ix + index.max_search() {
let ii = i % capacity;
if index.is_free(ii) {
if first_free.is_none() {
first_free = Some(ii);
}
continue;
}
let elem = IndexEntryPlaceInBucket::new(ii);
if elem.key(index) == key {
m.stop();
index
.stats
.find_index_entry_mut_us
.fetch_add(m.as_us(), Ordering::Relaxed);
return Ok((Some(elem), ii));
}
}
m.stop();
index
.stats
.find_index_entry_mut_us
.fetch_add(m.as_us(), Ordering::Relaxed);
match first_free {
Some(ii) => Ok((None, ii)),
None => Err(BucketMapError::IndexNoSpace(index.contents.capacity())),
}
}
fn bucket_find_index_entry(
index: &BucketStorage<IndexBucket<T>>,
key: &Pubkey,
random: u64,
) -> Option<(IndexEntryPlaceInBucket<T>, u64)> {
let ix = Self::bucket_index_ix(key, random) % index.capacity();
for i in ix..ix + index.max_search() {
let ii = i % index.capacity();
if index.is_free(ii) {
continue;
}
let elem = IndexEntryPlaceInBucket::new(ii);
if elem.key(index) == key {
return Some((elem, ii));
}
}
None
}
fn bucket_create_key(
index: &mut BucketStorage<IndexBucket<T>>,
key: &Pubkey,
random: u64,
is_resizing: bool,
) -> Result<u64, BucketMapError> {
let mut m = Measure::start("bucket_create_key");
let ix = Self::bucket_index_ix(key, random) % index.capacity();
for i in ix..ix + index.max_search() {
let ii = i % index.capacity();
if !index.is_free(ii) {
continue;
}
index.occupy(ii, is_resizing).unwrap();
// These fields will be overwritten after allocation by callers.
// Since this part of the mmapped file could have previously been used by someone else, there can be garbage here.
IndexEntryPlaceInBucket::new(ii).init(index, key);
//debug!( "INDEX ALLOC {:?} {} {} {}", key, ii, index.capacity, elem_uid );
m.stop();
index
.stats
.find_index_entry_mut_us
.fetch_add(m.as_us(), Ordering::Relaxed);
return Ok(ii);
}
m.stop();
index
.stats
.find_index_entry_mut_us
.fetch_add(m.as_us(), Ordering::Relaxed);
Err(BucketMapError::IndexNoSpace(index.contents.capacity()))
}
pub(crate) fn read_value(&self, key: &Pubkey) -> Option<(&[T], RefCount)> {
//debug!("READ_VALUE: {:?}", key);
let (elem, _) = self.find_index_entry(key)?;
Some(elem.read_value(&self.index, &self.data))
}
/// for each item in `items`, get the hash value when hashed with `random`.
/// Return a vec of tuples:
/// (hash_value, key, value)
fn index_entries(
items: impl Iterator<Item = (Pubkey, T)>,
count: usize,
random: u64,
) -> Vec<(u64, Pubkey, T)> {
let mut inserts = Vec::with_capacity(count);
items.for_each(|(key, v)| {
let ix = Self::bucket_index_ix(&key, random);
inserts.push((ix, key, v));
});
inserts
}
/// insert all of `items` into the index.
/// return duplicates
pub(crate) fn batch_insert_non_duplicates(
&mut self,
items: impl Iterator<Item = (Pubkey, T)>,
count: usize,
) -> Vec<(Pubkey, T, T)> {
assert!(
!self.at_least_one_entry_deleted,
"efficient batch insertion can only occur prior to any deletes"
);
let current_len = self.index.count.load(Ordering::Relaxed);
let anticipated = count as u64;
self.set_anticipated_count((anticipated).saturating_add(current_len));
let mut entries = Self::index_entries(items, count, self.random);
let mut duplicates = Vec::default();
// insert, but resizes may be necessary
loop {
let cap = self.index.capacity();
// sort entries by their index % cap, so we'll search over the same spots in the file close to each other
// `reverse()` is so we can efficiently pop off the end but get ascending order index values
// sort before calling to make `batch_insert_non_duplicates_internal` easier to test.
entries.sort_unstable_by(|a, b| (a.0 % cap).cmp(&(b.0 % cap)).reverse());
let result = Self::batch_insert_non_duplicates_internal(
&mut self.index,
&self.data,
&mut entries,
&mut duplicates,
);
match result {
Ok(_result) => {
// everything added
self.set_anticipated_count(0);
self.index.count.fetch_add(
count.saturating_sub(duplicates.len()) as u64,
Ordering::Relaxed,
);
return duplicates;
}
Err(error) => {
// resize and add more
// `entries` will have had items removed from it
self.grow(error);
self.handle_delayed_grows();
}
}
}
}
/// sort `entries` by hash value
/// insert as much of `entries` as possible into `index`.
/// return an error if the index needs to resize.
/// for every entry that already exists in `index`, add it (and the value already in the index) to `duplicates`
pub fn batch_insert_non_duplicates_internal(
index: &mut BucketStorage<IndexBucket<T>>,
data_buckets: &[BucketStorage<DataBucket>],
reverse_sorted_entries: &mut Vec<(u64, Pubkey, T)>,
duplicates: &mut Vec<(Pubkey, T, T)>,
) -> Result<(), BucketMapError> {
let max_search = index.max_search();
let cap = index.capacity();
let search_end = max_search.min(cap);
// pop one entry at a time to insert
'outer: while let Some((ix_entry_raw, k, v)) = reverse_sorted_entries.pop() {
let ix_entry = ix_entry_raw % cap;
// search for an empty spot starting at `ix_entry`
for search in 0..search_end {
let ix_index = (ix_entry + search) % cap;
let elem = IndexEntryPlaceInBucket::new(ix_index);
if index.try_lock(ix_index) {
// found free element and occupied it
// These fields will be overwritten after allocation by callers.
// Since this part of the mmapped file could have previously been used by someone else, there can be garbage here.
elem.init(index, &k);
// new data stored should be stored in IndexEntry and NOT in data file
// new data len is 1
elem.set_slot_count_enum_value(index, OccupiedEnum::OneSlotInIndex(&v));
continue 'outer; // this 'insertion' is completed: inserted successfully
} else {
// occupied, see if the key already exists here
if elem.key(index) == &k {
let (v_existing, _ref_count_existing) =
elem.read_value(index, data_buckets);
duplicates.push((k, v, *v_existing.first().unwrap()));
continue 'outer; // this 'insertion' is completed: found a duplicate entry
}
}
}
// search loop ended without finding a spot to insert this key
// so, remember the item we were trying to insert for next time after resizing
reverse_sorted_entries.push((ix_entry_raw, k, v));
return Err(BucketMapError::IndexNoSpace(cap));
}
Ok(())
}
pub fn try_write(
&mut self,
key: &Pubkey,
mut data: impl Iterator<Item = &'b T>,
data_len: usize,
ref_count: RefCount,
) -> Result<(), BucketMapError> {
let best_fit_bucket = MultipleSlots::data_bucket_from_num_slots(data_len as u64);
if self.data.get(best_fit_bucket as usize).is_none() {
// fail early if the data bucket we need doesn't exist - we don't want the index entry partially allocated
return Err(BucketMapError::DataNoSpace((best_fit_bucket, 0)));
}
let max_search = self.index.max_search();
let (elem, elem_ix) = Self::find_index_entry_mut(&mut self.index, key, self.random)?;
let elem = if let Some(elem) = elem {
elem
} else {
let is_resizing = false;
self.index.occupy(elem_ix, is_resizing).unwrap();
let elem_allocate = IndexEntryPlaceInBucket::new(elem_ix);
// These fields will be overwritten after allocation by callers.
// Since this part of the mmapped file could have previously been used by someone else, there can be garbage here.
elem_allocate.init(&mut self.index, key);
elem_allocate
};
let num_slots = data_len as u64;
if num_slots <= 1 && ref_count == 1 {
// new data stored should be stored in IndexEntry and NOT in data file
// new data len is 0 or 1
if let OccupiedEnum::MultipleSlots(multiple_slots) =
elem.get_slot_count_enum(&self.index)
{
let bucket_ix = multiple_slots.data_bucket_ix() as usize;
// free the entry in the data bucket the data was previously stored in
let loc = multiple_slots.data_loc(&self.data[bucket_ix]);
self.data[bucket_ix].free(loc);
}
elem.set_slot_count_enum_value(
&mut self.index,
if let Some(single_element) = data.next() {
OccupiedEnum::OneSlotInIndex(single_element)
} else {
OccupiedEnum::ZeroSlots
},
);
return Ok(());
}
// storing the slot list requires using the data file
let mut old_data_entry_to_free = None;
// see if old elements were in a data file
if let Some(multiple_slots) = elem.get_multiple_slots_mut(&mut self.index) {
let bucket_ix = multiple_slots.data_bucket_ix() as usize;
let current_bucket = &mut self.data[bucket_ix];
let elem_loc = multiple_slots.data_loc(current_bucket);
if best_fit_bucket == bucket_ix as u64 {
// in place update in same data file
MultipleSlots::set_ref_count(current_bucket, elem_loc, ref_count);
// write data
assert!(!current_bucket.is_free(elem_loc));
let slice: &mut [T] = current_bucket.get_mut_cell_slice(
elem_loc,
data_len as u64,
IncludeHeader::NoHeader,
);
multiple_slots.set_num_slots(num_slots);
slice.iter_mut().zip(data).for_each(|(dest, src)| {
*dest = *src;
});
return Ok(());
}
// not updating in place, so remember old entry to free
// Wait to free until we make sure we don't have to resize the best_fit_bucket
old_data_entry_to_free = Some(DataFileEntryToFree {
bucket_ix,
location: elem_loc,
});
}
// need to move the allocation to a best fit spot
let best_bucket = &mut self.data[best_fit_bucket as usize];
let cap_power = best_bucket.contents.capacity_pow2();
let cap = best_bucket.capacity();
let pos = thread_rng().gen_range(0, cap);
let mut success = false;
// max search is increased here by a lot for this search. The idea is that we just have to find an empty bucket somewhere.
// We don't mind waiting on a new write (by searching longer). Writing is done in the background only.
// Wasting space by doubling the bucket size is worse behavior. We expect more
// updates and fewer inserts, so we optimize for more compact data.
// We can accomplish this by increasing how many locations we're willing to search for an empty data cell.
// For the index bucket, it is more like a hash table and we have to exhaustively search 'max_search' to prove an item does not exist.
// And we do have to support the 'does not exist' case with good performance. So, it makes sense to grow the index bucket when it is too large.
// For data buckets, the offset is stored in the index, so it is directly looked up. So, the only search is on INSERT or update to a new sized value.
for i in pos..pos + (max_search * 10).min(cap) {
let ix = i % cap;
if best_bucket.is_free(ix) {
let mut multiple_slots = MultipleSlots::default();
multiple_slots.set_storage_offset(ix);
multiple_slots
.set_storage_capacity_when_created_pow2(best_bucket.contents.capacity_pow2());
multiple_slots.set_num_slots(num_slots);
MultipleSlots::set_ref_count(best_bucket, ix, ref_count);
elem.set_slot_count_enum_value(
&mut self.index,
OccupiedEnum::MultipleSlots(&multiple_slots),
);
//debug!( "DATA ALLOC {:?} {} {} {}", key, elem.data_location, best_bucket.capacity, elem_uid );
let best_bucket = &mut self.data[best_fit_bucket as usize];
best_bucket.occupy(ix, false).unwrap();
if num_slots > 0 {
// copy slotlist into the data bucket
let slice =
best_bucket.get_mut_cell_slice(ix, num_slots, IncludeHeader::NoHeader);
slice.iter_mut().zip(data).for_each(|(dest, src)| {
*dest = *src;
});
}
success = true;
break;
}
}
if !success {
return Err(BucketMapError::DataNoSpace((best_fit_bucket, cap_power)));
}
if let Some(DataFileEntryToFree {
bucket_ix,
location,
}) = old_data_entry_to_free
{
// free the entry in the data bucket the data was previously stored in
self.data[bucket_ix].free(location);
}
Ok(())
}
pub fn delete_key(&mut self, key: &Pubkey) {
if let Some((elem, elem_ix)) = self.find_index_entry(key) {
self.at_least_one_entry_deleted = true;
if let OccupiedEnum::MultipleSlots(multiple_slots) =
elem.get_slot_count_enum(&self.index)
{
let ix = multiple_slots.data_bucket_ix() as usize;
let data_bucket = &self.data[ix];
let loc = multiple_slots.data_loc(data_bucket);
let data_bucket = &mut self.data[ix];
//debug!( "DATA FREE {:?} {} {} {}", key, elem.data_location, data_bucket.capacity, elem_uid );
data_bucket.free(loc);
}
//debug!("INDEX FREE {:?} {}", key, elem_uid);
self.index.free(elem_ix);
}
}
pub(crate) fn set_anticipated_count(&mut self, count: u64) {
self.anticipated_size = count;
}
pub fn grow_index(&self, mut current_capacity: u64) {
if self.index.contents.capacity() == current_capacity {
// make sure to grow to at least % more than the anticipated size
// The indexing algorithm expects to require some over-allocation.
let anticipated_size = self.anticipated_size * 140 / 100;
let mut m = Measure::start("grow_index");
//debug!("GROW_INDEX: {}", current_capacity_pow2);
let mut count = 0;
loop {
count += 1;
// grow relative to the current capacity
let new_capacity = (current_capacity * 110 / 100).max(anticipated_size);
let mut index = BucketStorage::new_with_capacity(
Arc::clone(&self.drives),
1,
std::mem::size_of::<IndexEntry<T>>() as u64,
Capacity::Actual(new_capacity),
self.index.max_search,
Arc::clone(&self.stats.index),
Arc::clone(&self.index.count),
);
// index may have allocated something larger than we asked for,
// so, in case we fail to reindex into this larger size, grow from this size next iteration.
current_capacity = index.capacity();
let mut valid = true;
for ix in 0..self.index.capacity() {
if !self.index.is_free(ix) {
let elem: &IndexEntry<T> = self.index.get(ix);
let new_ix =
Self::bucket_create_key(&mut index, &elem.key, self.random, true);
if new_ix.is_err() {
valid = false;
break;
}
let new_ix = new_ix.unwrap();
let new_elem: &mut IndexEntry<T> = index.get_mut(new_ix);
*new_elem = *elem;
index.copying_entry(new_ix, &self.index, ix);
/*
let dbg_elem: IndexEntry = *new_elem;
assert_eq!(
Self::bucket_find_index_entry(&index, &elem.key, random).unwrap(),
(&dbg_elem, new_ix)
);
*/
}
}
if valid {
self.stats.index.update_max_size(index.capacity());
let mut items = self.reallocated.items.lock().unwrap();
items.index = Some(index);
self.reallocated.add_reallocation();
break;
}
}
m.stop();
if count > 1 {
self.stats
.index
.failed_resizes
.fetch_add(count - 1, Ordering::Relaxed);
}
self.stats.index.resizes.fetch_add(1, Ordering::Relaxed);
self.stats
.index
.resize_us
.fetch_add(m.as_us(), Ordering::Relaxed);
}
}
pub fn apply_grow_index(&mut self, index: BucketStorage<IndexBucket<T>>) {
self.stats
.index
.resize_grow(self.index.capacity_bytes(), index.capacity_bytes());
self.index = index;
}
fn elem_size() -> u64 {
std::mem::size_of::<T>() as u64
}
fn add_data_bucket(&mut self, bucket: BucketStorage<DataBucket>) {
self.stats.data.file_count.fetch_add(1, Ordering::Relaxed);
self.stats.data.resize_grow(0, bucket.capacity_bytes());
self.data.push(bucket);
}
pub fn apply_grow_data(&mut self, ix: usize, bucket: BucketStorage<DataBucket>) {
if self.data.get(ix).is_none() {
for i in self.data.len()..ix {
// insert empty data buckets
self.add_data_bucket(BucketStorage::new(
Arc::clone(&self.drives),
1 << i,
Self::elem_size(),
self.index.max_search,
Arc::clone(&self.stats.data),
Arc::default(),
));
}
self.add_data_bucket(bucket);
} else {
let data_bucket = &mut self.data[ix];
self.stats
.data
.resize_grow(data_bucket.capacity_bytes(), bucket.capacity_bytes());
self.data[ix] = bucket;
}
}
/// grow a data bucket
/// The application of the new bucket is deferred until the next write lock.
pub fn grow_data(&self, data_index: u64, current_capacity_pow2: u8) {
let new_bucket = BucketStorage::new_resized(
&self.drives,
self.index.max_search,
self.data.get(data_index as usize),
Capacity::Pow2(std::cmp::max(
current_capacity_pow2 + 1,
DEFAULT_CAPACITY_POW2,
)),
1 << data_index,
Self::elem_size(),
&self.stats.data,
);
self.reallocated.add_reallocation();
let mut items = self.reallocated.items.lock().unwrap();
items.data = Some((data_index, new_bucket));
}
fn bucket_index_ix(key: &Pubkey, random: u64) -> u64 {
let mut s = DefaultHasher::new();
key.hash(&mut s);
//the locally generated random will make it hard for an attacker
//to deterministically cause all the pubkeys to land in the same
//location in any bucket on all validators
random.hash(&mut s);
s.finish()
//debug!( "INDEX_IX: {:?} uid:{} loc: {} cap:{}", key, uid, location, index.capacity() );
}
/// grow the appropriate piece. Note this takes an immutable ref.
/// The actual grow is set into self.reallocated and applied later on a write lock
pub(crate) fn grow(&self, err: BucketMapError) {
match err {
BucketMapError::DataNoSpace((data_index, current_capacity_pow2)) => {
//debug!("GROWING SPACE {:?}", (data_index, current_capacity_pow2));
self.grow_data(data_index, current_capacity_pow2);
}
BucketMapError::IndexNoSpace(current_capacity) => {
//debug!("GROWING INDEX {}", sz);
self.grow_index(current_capacity);
}
}
}
/// if a bucket was resized previously with a read lock, then apply that resize now
pub fn handle_delayed_grows(&mut self) {
if self.reallocated.get_reallocated() {
// swap out the bucket that was resized previously with a read lock
let mut items = std::mem::take(&mut *self.reallocated.items.lock().unwrap());
if let Some(bucket) = items.index.take() {
self.apply_grow_index(bucket);
} else {
// data bucket
let (i, new_bucket) = items.data.take().unwrap();
self.apply_grow_data(i as usize, new_bucket);
}
}
}
pub fn insert(&mut self, key: &Pubkey, value: (&[T], RefCount)) {
let (new, refct) = value;
loop {
let rv = self.try_write(key, new.iter(), new.len(), refct);
match rv {
Ok(_) => return,
Err(err) => {
self.grow(err);
self.handle_delayed_grows();
}
}
}
}
pub fn update<F>(&mut self, key: &Pubkey, mut updatefn: F)
where
F: FnMut(Option<(&[T], RefCount)>) -> Option<(Vec<T>, RefCount)>,
{
let current = self.read_value(key);
let new = updatefn(current);
if new.is_none() {
self.delete_key(key);
return;
}
let (new, refct) = new.unwrap();
self.insert(key, (&new, refct));
}
}
#[cfg(test)]
mod tests {
use {super::*, tempfile::tempdir};
#[test]
fn test_index_entries() {
for v in 10..12u64 {
for random in 1..3 {
for len in 1..3 {
let raw = (0..len)
.map(|l| {
let k = Pubkey::from([l as u8; 32]);
(k, v + (l as u64))
})
.collect::<Vec<_>>();
let hashed = Bucket::index_entries(raw.clone().into_iter(), len, random);
assert_eq!(hashed.len(), len);
(0..len).for_each(|i| {
let raw = raw[i];
let hashed = hashed[i];
assert_eq!(Bucket::<u64>::bucket_index_ix(&raw.0, random), hashed.0);
assert_eq!(raw.0, hashed.1);
assert_eq!(raw.1, hashed.2);
});
}
}
}
}
fn create_test_index(max_search: Option<u8>) -> BucketStorage<IndexBucket<u64>> {
let tmpdir = tempdir().unwrap();
let paths: Vec<PathBuf> = vec![tmpdir.path().to_path_buf()];
assert!(!paths.is_empty());
let max_search = max_search.unwrap_or(2);
BucketStorage::<IndexBucket<u64>>::new(
Arc::new(paths),
1,
std::mem::size_of::<crate::index_entry::IndexEntry<u64>>() as u64,
max_search,
Arc::default(),
Arc::default(),
)
}
#[test]
fn batch_insert_duplicates_internal_simple() {
solana_logger::setup();
// add the same duplicate key several times.
// make sure the resulting index and returned `duplicates` is correct.
let random = 1;
let data_buckets = Vec::default();
let k = Pubkey::from([1u8; 32]);
for v in 10..12u64 {
for len in 1..4 {
let raw = (0..len).map(|l| (k, v + (l as u64))).collect::<Vec<_>>();
let mut hashed = Bucket::index_entries(raw.clone().into_iter(), len, random);
let hashed_raw = hashed.clone();
let mut index = create_test_index(None);
let mut duplicates = Vec::default();
assert!(Bucket::<u64>::batch_insert_non_duplicates_internal(
&mut index,
&Vec::default(),
&mut hashed,
&mut duplicates,
)
.is_ok());
assert_eq!(duplicates.len(), len - 1);
assert_eq!(hashed.len(), 0);
let single_hashed_raw_inserted = hashed_raw.last().unwrap();
let elem =
IndexEntryPlaceInBucket::new(single_hashed_raw_inserted.0 % index.capacity());
let (value, ref_count) = elem.read_value(&index, &data_buckets);
assert_eq!(ref_count, 1);
assert_eq!(value, &[single_hashed_raw_inserted.2]);
let expected_duplicates = hashed_raw
.iter()
.rev()
.skip(1)
.map(|(_hash, k, v)| (*k, *v, single_hashed_raw_inserted.2))
.collect::<Vec<_>>();
assert_eq!(expected_duplicates, duplicates);
}
}
}
#[test]
fn batch_insert_non_duplicates_internal_simple() {
solana_logger::setup();
// add 2 entries, make sure they are added in the buckets we expect
let random = 1;
let data_buckets = Vec::default();
for v in 10..12u64 {
for len in 1..3 {
let raw = (0..len)
.map(|l| {
let k = Pubkey::from([l as u8; 32]);
(k, v + (l as u64))
})
.collect::<Vec<_>>();
let mut hashed = Bucket::index_entries(raw.clone().into_iter(), len, random);
let hashed_raw = hashed.clone();
let mut index = create_test_index(None);
let mut duplicates = Vec::default();
assert!(Bucket::<u64>::batch_insert_non_duplicates_internal(
&mut index,
&Vec::default(),
&mut hashed,
&mut duplicates,
)
.is_ok());
assert_eq!(hashed.len(), 0);
(0..len).for_each(|i| {
let raw = hashed_raw[i];
let elem = IndexEntryPlaceInBucket::new(raw.0 % index.capacity());
let (value, ref_count) = elem.read_value(&index, &data_buckets);
assert_eq!(ref_count, 1);
assert_eq!(value, &[hashed_raw[i].2]);
});
}
}
}
#[test]
fn batch_insert_non_duplicates_internal_same_ix_exceeds_max_search() {
solana_logger::setup();
// add `len` entries with the same ix, make sure they are added in subsequent buckets.
// adjust `max_search`. If we try to add an entry that causes us to exceed `max_search`, then assert that the adding fails with an error and
// the colliding item remains in `entries`
let random = 1;
let data_buckets = Vec::default();
for max_search in [2usize, 3] {
for v in 10..12u64 {
for len in 1..(max_search + 1) {
let raw = (0..len)
.map(|l| {
let k = Pubkey::from([l as u8; 32]);
(k, v + (l as u64))
})
.collect::<Vec<_>>();
let mut hashed = Bucket::index_entries(raw.clone().into_iter(), len, random);
let common_ix = 2; // both are put at same ix
hashed.iter_mut().for_each(|mut v| {
v.0 = common_ix;
});
let hashed_raw = hashed.clone();
let mut index = create_test_index(Some(max_search as u8));
let mut duplicates = Vec::default();
let result = Bucket::<u64>::batch_insert_non_duplicates_internal(
&mut index,
&Vec::default(),
&mut hashed,
&mut duplicates,
);
assert_eq!(
hashed.len(),
if len > max_search { 1 } else { 0 },
"len: {len}"
);
(0..len).for_each(|i| {
assert!(if len > max_search {
result.is_err()
} else {
result.is_ok()
});
let raw = hashed_raw[i];
if i == 0 && len > max_search {
// max search was exceeded and the first entry was unable to be inserted, so it remained in `hashed`
assert_eq!(hashed[0], hashed_raw[0]);
} else {
// we insert in reverse order when ix values are equal, so we expect to find item[1] in item[1]'s expected ix and item[0] will be 1 search distance away from expected ix
let search_required = (len - i - 1) as u64;
let elem = IndexEntryPlaceInBucket::new(
(raw.0 + search_required) % index.capacity(),
);
let (value, ref_count) = elem.read_value(&index, &data_buckets);
assert_eq!(ref_count, 1);
assert_eq!(value, &[hashed_raw[i].2]);
}
});
}
}
}
}
#[should_panic(expected = "batch insertion can only occur prior to any deletes")]
#[test]
fn batch_insert_after_delete() {
solana_logger::setup();
let tmpdir = tempdir().unwrap();
let paths: Vec<PathBuf> = vec![tmpdir.path().to_path_buf()];
assert!(!paths.is_empty());
let max_search = 2;
let mut bucket = Bucket::new(Arc::new(paths), max_search, Arc::default(), Arc::default());
let key = Pubkey::new_unique();
assert_eq!(bucket.read_value(&key), None);
bucket.update(&key, |_| Some((vec![0], 0)));
bucket.delete_key(&key);
bucket.batch_insert_non_duplicates(std::iter::empty(), 0);
}
}